This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatlubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| clatlubcl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | clatlubcl2 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | clatlubcl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 4 | 3 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 5 | 4 | biimpri | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 7 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 8 | 1 2 7 | isclat | ⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom ( glb ‘ 𝐾 ) = 𝒫 𝐵 ) ) ) |
| 9 | simprl | ⊢ ( ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom ( glb ‘ 𝐾 ) = 𝒫 𝐵 ) ) → dom 𝑈 = 𝒫 𝐵 ) | |
| 10 | 8 9 | sylbi | ⊢ ( 𝐾 ∈ CLat → dom 𝑈 = 𝒫 𝐵 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝑈 = 𝒫 𝐵 ) |
| 12 | 6 11 | eleqtrrd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝑈 ) |