This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjdiv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 2 | cjcl | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) | |
| 5 | cjcl | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) | |
| 8 | cjne0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 ↔ ( ∗ ‘ 𝐵 ) ≠ 0 ) ) | |
| 9 | 4 8 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ≠ 0 ↔ ( ∗ ‘ 𝐵 ) ≠ 0 ) ) |
| 10 | 7 9 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ 𝐵 ) ≠ 0 ) |
| 11 | 3 6 10 | divcan4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) / ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 12 | cjmul | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) ) | |
| 13 | 1 4 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) ) |
| 14 | divcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) | |
| 15 | 14 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ∗ ‘ 𝐴 ) ) |
| 16 | 13 15 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ 𝐴 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) / ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
| 18 | 11 17 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |