This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codoamin of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtf | ⊢ θ : ℝ ⟶ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cht | ⊢ θ = ( 𝑥 ∈ ℝ ↦ Σ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 2 | ppifi | ⊢ ( 𝑥 ∈ ℝ → ( ( 0 [,] 𝑥 ) ∩ ℙ ) ∈ Fin ) | |
| 3 | simpr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) | |
| 4 | 3 | elin2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 5 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 7 | 6 | nnrpd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 8 | 7 | relogcld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 9 | 2 8 | fsumrecl | ⊢ ( 𝑥 ∈ ℝ → Σ 𝑝 ∈ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ ℝ ) |
| 10 | 1 9 | fmpti | ⊢ θ : ℝ ⟶ ℝ |