This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chsscon2i | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | chssii | ⊢ 𝐴 ⊆ ℋ |
| 4 | 2 | chssii | ⊢ 𝐵 ⊆ ℋ |
| 5 | occon3 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |