This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chlej1 | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 2 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 3 | chsh | ⊢ ( 𝐶 ∈ Cℋ → 𝐶 ∈ Sℋ ) | |
| 4 | shlej1 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) | |
| 5 | 1 2 3 4 | syl3anl | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |