This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ceqsexv2d as of 5-Jun-2025. (Contributed by Thierry Arnoux, 10-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsexv2dOLD.1 | ⊢ 𝐴 ∈ V | |
| ceqsexv2dOLD.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsexv2dOLD.3 | ⊢ 𝜓 | ||
| Assertion | ceqsexv2dOLD | ⊢ ∃ 𝑥 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2dOLD.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsexv2dOLD.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | ceqsexv2dOLD.3 | ⊢ 𝜓 | |
| 4 | 1 2 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |
| 5 | 4 | biimpri | ⊢ ( 𝜓 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 6 | exsimpr | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝜑 ) | |
| 7 | 3 5 6 | mp2b | ⊢ ∃ 𝑥 𝜑 |