This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018) (Revised by AV, 9-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccats1pfxeq | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) → 𝑈 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ∧ 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 3 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 4 | 3 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 5 | pncan1 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
| 7 | 6 | eqcomd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) ) |
| 9 | oveq1 | ⊢ ( ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) ) | |
| 10 | 9 | eqcomd | ⊢ ( ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 12 | 8 11 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ♯ ‘ 𝑊 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = ( ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 15 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 𝑈 ∈ Word 𝑉 ) | |
| 16 | nn0p1gt0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 17 | 3 16 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 19 | breq2 | ⊢ ( ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) | |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 0 < ( ♯ ‘ 𝑈 ) ) |
| 22 | hashneq0 | ⊢ ( 𝑈 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 𝑈 ≠ ∅ ) ) | |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 𝑈 ≠ ∅ ) ) |
| 24 | 21 23 | mpbid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 𝑈 ≠ ∅ ) |
| 25 | pfxlswccat | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅ ) → ( ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) | |
| 26 | 15 24 25 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 27 | 14 26 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ∧ 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 29 | 2 28 | eqtr2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ∧ 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ) → 𝑈 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 30 | 29 | ex | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) → 𝑈 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) ) |