This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatrcl1 | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ ( 𝑊 = ( 𝐴 ++ 𝐵 ) ∧ 𝑊 ∈ Word 𝑆 ) ) → 𝐴 ∈ Word 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑊 = ( 𝐴 ++ 𝐵 ) → ( 𝑊 ∈ Word 𝑆 ↔ ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ) ) | |
| 2 | wrdv | ⊢ ( 𝐴 ∈ Word 𝑋 → 𝐴 ∈ Word V ) | |
| 3 | wrdv | ⊢ ( 𝐵 ∈ Word 𝑌 → 𝐵 ∈ Word V ) | |
| 4 | ccatalpha | ⊢ ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) ) ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) ) ) |
| 6 | 1 5 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) ∧ 𝑊 = ( 𝐴 ++ 𝐵 ) ) → ( 𝑊 ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) → 𝐴 ∈ Word 𝑆 ) | |
| 8 | 6 7 | biimtrdi | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) ∧ 𝑊 = ( 𝐴 ++ 𝐵 ) ) → ( 𝑊 ∈ Word 𝑆 → 𝐴 ∈ Word 𝑆 ) ) |
| 9 | 8 | expimpd | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) → ( ( 𝑊 = ( 𝐴 ++ 𝐵 ) ∧ 𝑊 ∈ Word 𝑆 ) → 𝐴 ∈ Word 𝑆 ) ) |
| 10 | 9 | 3impia | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ ( 𝑊 = ( 𝐴 ++ 𝐵 ) ∧ 𝑊 ∈ Word 𝑆 ) ) → 𝐴 ∈ Word 𝑆 ) |