This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatrcl1 | |- ( ( A e. Word X /\ B e. Word Y /\ ( W = ( A ++ B ) /\ W e. Word S ) ) -> A e. Word S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( W = ( A ++ B ) -> ( W e. Word S <-> ( A ++ B ) e. Word S ) ) |
|
| 2 | wrdv | |- ( A e. Word X -> A e. Word _V ) |
|
| 3 | wrdv | |- ( B e. Word Y -> B e. Word _V ) |
|
| 4 | ccatalpha | |- ( ( A e. Word _V /\ B e. Word _V ) -> ( ( A ++ B ) e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( A e. Word X /\ B e. Word Y ) -> ( ( A ++ B ) e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) |
| 6 | 1 5 | sylan9bbr | |- ( ( ( A e. Word X /\ B e. Word Y ) /\ W = ( A ++ B ) ) -> ( W e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) |
| 7 | simpl | |- ( ( A e. Word S /\ B e. Word S ) -> A e. Word S ) |
|
| 8 | 6 7 | biimtrdi | |- ( ( ( A e. Word X /\ B e. Word Y ) /\ W = ( A ++ B ) ) -> ( W e. Word S -> A e. Word S ) ) |
| 9 | 8 | expimpd | |- ( ( A e. Word X /\ B e. Word Y ) -> ( ( W = ( A ++ B ) /\ W e. Word S ) -> A e. Word S ) ) |
| 10 | 9 | 3impia | |- ( ( A e. Word X /\ B e. Word Y /\ ( W = ( A ++ B ) /\ W e. Word S ) ) -> A e. Word S ) |