This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrabw when possible. (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrab.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| cbvrab.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| cbvrab.3 | ⊢ Ⅎ 𝑦 𝜑 | ||
| cbvrab.4 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvrab.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvrab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∈ 𝐴 ∣ 𝜓 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrab.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | cbvrab.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | cbvrab.3 | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | cbvrab.4 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | cbvrab.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) | |
| 7 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 8 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 11 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 13 | 6 9 12 | cbvab | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) } |
| 14 | 2 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 |
| 15 | 3 | nfsb | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 17 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) | |
| 18 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 19 | sbequ | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 20 | 4 5 | sbie | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 21 | 19 20 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 22 | 18 21 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 23 | 16 17 22 | cbvab | ⊢ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) } |
| 24 | 13 23 | eqtri | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) } |
| 25 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 26 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜓 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) } | |
| 27 | 24 25 26 | 3eqtr4i | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∈ 𝐴 ∣ 𝜓 } |