This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Version of cbvcsb with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 13-Sep-2009) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvcsbw.1 | ⊢ Ⅎ 𝑦 𝐶 | |
| cbvcsbw.2 | ⊢ Ⅎ 𝑥 𝐷 | ||
| cbvcsbw.3 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | ||
| Assertion | cbvcsbw | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑦 ⦌ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbw.1 | ⊢ Ⅎ 𝑦 𝐶 | |
| 2 | cbvcsbw.2 | ⊢ Ⅎ 𝑥 𝐷 | |
| 3 | cbvcsbw.3 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| 4 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐶 |
| 5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐷 |
| 6 | 3 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷 ) ) |
| 7 | 4 5 6 | cbvsbcw | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐶 ↔ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐷 ) |
| 8 | 7 | abbii | ⊢ { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐶 } = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐷 } |
| 9 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐶 } | |
| 10 | df-csb | ⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝐷 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐷 } | |
| 11 | 8 9 10 | 3eqtr4i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑦 ⦌ 𝐷 |