This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| cats1cli.2 | ⊢ 𝑆 ∈ Word V | ||
| cats1fvn.3 | ⊢ ( ♯ ‘ 𝑆 ) = 𝑀 | ||
| cats1len.4 | ⊢ ( 𝑀 + 1 ) = 𝑁 | ||
| Assertion | cats1len | ⊢ ( ♯ ‘ 𝑇 ) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| 2 | cats1cli.2 | ⊢ 𝑆 ∈ Word V | |
| 3 | cats1fvn.3 | ⊢ ( ♯ ‘ 𝑆 ) = 𝑀 | |
| 4 | cats1len.4 | ⊢ ( 𝑀 + 1 ) = 𝑁 | |
| 5 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) |
| 6 | s1cli | ⊢ 〈“ 𝑋 ”〉 ∈ Word V | |
| 7 | ccatlen | ⊢ ( ( 𝑆 ∈ Word V ∧ 〈“ 𝑋 ”〉 ∈ Word V ) → ( ♯ ‘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) ) | |
| 8 | 2 6 7 | mp2an | ⊢ ( ♯ ‘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) |
| 9 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 ) = 1 | |
| 10 | 3 9 | oveq12i | ⊢ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) = ( 𝑀 + 1 ) |
| 11 | 8 10 | eqtri | ⊢ ( ♯ ‘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑀 + 1 ) |
| 12 | 11 4 | eqtri | ⊢ ( ♯ ‘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = 𝑁 |
| 13 | 5 12 | eqtri | ⊢ ( ♯ ‘ 𝑇 ) = 𝑁 |