This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| cats1cat.2 | ⊢ 𝐴 ∈ Word V | ||
| cats1cat.3 | ⊢ 𝑆 ∈ Word V | ||
| cats1cat.4 | ⊢ 𝐶 = ( 𝐵 ++ 〈“ 𝑋 ”〉 ) | ||
| cats1cat.5 | ⊢ 𝐵 = ( 𝐴 ++ 𝑆 ) | ||
| Assertion | cats1cat | ⊢ 𝐶 = ( 𝐴 ++ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| 2 | cats1cat.2 | ⊢ 𝐴 ∈ Word V | |
| 3 | cats1cat.3 | ⊢ 𝑆 ∈ Word V | |
| 4 | cats1cat.4 | ⊢ 𝐶 = ( 𝐵 ++ 〈“ 𝑋 ”〉 ) | |
| 5 | cats1cat.5 | ⊢ 𝐵 = ( 𝐴 ++ 𝑆 ) | |
| 6 | 5 | oveq1i | ⊢ ( 𝐵 ++ 〈“ 𝑋 ”〉 ) = ( ( 𝐴 ++ 𝑆 ) ++ 〈“ 𝑋 ”〉 ) |
| 7 | s1cli | ⊢ 〈“ 𝑋 ”〉 ∈ Word V | |
| 8 | ccatass | ⊢ ( ( 𝐴 ∈ Word V ∧ 𝑆 ∈ Word V ∧ 〈“ 𝑋 ”〉 ∈ Word V ) → ( ( 𝐴 ++ 𝑆 ) ++ 〈“ 𝑋 ”〉 ) = ( 𝐴 ++ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) ) | |
| 9 | 2 3 7 8 | mp3an | ⊢ ( ( 𝐴 ++ 𝑆 ) ++ 〈“ 𝑋 ”〉 ) = ( 𝐴 ++ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) |
| 10 | 6 9 | eqtri | ⊢ ( 𝐵 ++ 〈“ 𝑋 ”〉 ) = ( 𝐴 ++ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) |
| 11 | 1 | oveq2i | ⊢ ( 𝐴 ++ 𝑇 ) = ( 𝐴 ++ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) |
| 12 | 10 4 11 | 3eqtr4i | ⊢ 𝐶 = ( 𝐴 ++ 𝑇 ) |