This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| cats1cld.2 | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | ||
| cats1cld.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| cats1co.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| cats1co.5 | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝑆 ) = 𝑈 ) | ||
| cats1co.6 | ⊢ 𝑉 = ( 𝑈 ++ 〈“ ( 𝐹 ‘ 𝑋 ) ”〉 ) | ||
| Assertion | cats1co | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝑇 ) = 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| 2 | cats1cld.2 | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| 3 | cats1cld.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 4 | cats1co.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 5 | cats1co.5 | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝑆 ) = 𝑈 ) | |
| 6 | cats1co.6 | ⊢ 𝑉 = ( 𝑈 ++ 〈“ ( 𝐹 ‘ 𝑋 ) ”〉 ) | |
| 7 | 3 | s1cld | ⊢ ( 𝜑 → 〈“ 𝑋 ”〉 ∈ Word 𝐴 ) |
| 8 | ccatco | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = ( ( 𝐹 ∘ 𝑆 ) ++ ( 𝐹 ∘ 〈“ 𝑋 ”〉 ) ) ) | |
| 9 | 2 7 4 8 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = ( ( 𝐹 ∘ 𝑆 ) ++ ( 𝐹 ∘ 〈“ 𝑋 ”〉 ) ) ) |
| 10 | s1co | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 〈“ 𝑋 ”〉 ) = 〈“ ( 𝐹 ‘ 𝑋 ) ”〉 ) | |
| 11 | 3 4 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 〈“ 𝑋 ”〉 ) = 〈“ ( 𝐹 ‘ 𝑋 ) ”〉 ) |
| 12 | 5 11 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝑆 ) ++ ( 𝐹 ∘ 〈“ 𝑋 ”〉 ) ) = ( 𝑈 ++ 〈“ ( 𝐹 ‘ 𝑋 ) ”〉 ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) = ( 𝑈 ++ 〈“ ( 𝐹 ‘ 𝑋 ) ”〉 ) ) |
| 14 | 1 | coeq2i | ⊢ ( 𝐹 ∘ 𝑇 ) = ( 𝐹 ∘ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ) |
| 15 | 13 14 6 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝑇 ) = 𝑉 ) |