This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A and B are cosets by converse R : a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcosscnv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ◡ 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcoss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ◡ 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝑥 ◡ 𝑅 𝐴 ∧ 𝑥 ◡ 𝑅 𝐵 ) ) ) | |
| 2 | brcnvg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 3 | 2 | el2v1 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝑥 ) ) |
| 4 | brcnvg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝑥 ) ) | |
| 5 | 4 | el2v1 | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝑥 ) ) |
| 6 | 3 5 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ◡ 𝑅 𝐴 ∧ 𝑥 ◡ 𝑅 𝐵 ) ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) |
| 7 | 6 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ( 𝑥 ◡ 𝑅 𝐴 ∧ 𝑥 ◡ 𝑅 𝐵 ) ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) |
| 8 | 1 7 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ◡ 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) |