This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dual statement of sylg (the final "e" in the label stands for "existential (version of sylg )". Variant of exlimih . (Contributed by BJ, 25-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-sylge.nf | ⊢ ( ∃ 𝑥 𝜑 → 𝜓 ) | |
| bj-sylge.maj | ⊢ ( 𝜒 → 𝜑 ) | ||
| Assertion | bj-sylge | ⊢ ( ∃ 𝑥 𝜒 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sylge.nf | ⊢ ( ∃ 𝑥 𝜑 → 𝜓 ) | |
| 2 | bj-sylge.maj | ⊢ ( 𝜒 → 𝜑 ) | |
| 3 | 2 | eximi | ⊢ ( ∃ 𝑥 𝜒 → ∃ 𝑥 𝜑 ) |
| 4 | 3 1 | syl | ⊢ ( ∃ 𝑥 𝜒 → 𝜓 ) |