This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A slightly more general exlimd . A common usage will have ph substituted for ps and th substituted for ta , giving a form closer to exlimd . (Contributed by BJ, 25-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-exlimd.ph | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) | |
| bj-exlimd.th | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜃 → 𝜏 ) ) | ||
| bj-exlimd.maj | ⊢ ( 𝜓 → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | bj-exlimd | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜒 → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-exlimd.ph | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) | |
| 2 | bj-exlimd.th | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜃 → 𝜏 ) ) | |
| 3 | bj-exlimd.maj | ⊢ ( 𝜓 → ( 𝜒 → 𝜃 ) ) | |
| 4 | 1 3 | sylg | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝜒 → 𝜃 ) ) |
| 5 | bj-exlimg | ⊢ ( ( ∃ 𝑥 𝜃 → 𝜏 ) → ( ∀ 𝑥 ( 𝜒 → 𝜃 ) → ( ∃ 𝑥 𝜒 → 𝜏 ) ) ) | |
| 6 | 2 4 5 | sylc | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜒 → 𝜏 ) ) |