This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of hbex . (Contributed by BJ, 10-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-hbext | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa2 | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | hbnt | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | |
| 3 | 2 | alimi | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
| 4 | bj-hbalt | ⊢ ( ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
| 6 | 1 5 | alrimi | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
| 7 | hbnt | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) → ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
| 9 | df-ex | ⊢ ( ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜑 ) | |
| 10 | 9 | bicomi | ⊢ ( ¬ ∀ 𝑦 ¬ 𝜑 ↔ ∃ 𝑦 𝜑 ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ↔ ∀ 𝑥 ∃ 𝑦 𝜑 ) |
| 12 | 8 10 11 | 3imtr3g | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |