This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bianim.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| bianim.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | bianim | ⊢ ( 𝜑 ↔ ( 𝜃 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianim.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 2 | bianim.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | 2 | pm5.32ri | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜃 ∧ 𝜒 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝜑 ↔ ( 𝜃 ∧ 𝜒 ) ) |