This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axpr . There exists a set to which all sets whose only members are empty sets belong. (Contributed by Rohan Ridenour, 9-Aug-2023) (Revised by BJ, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprlem2 | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pow | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ) ) | |
| 3 | imim2 | ⊢ ( ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ( 𝑧 ∈ 𝑦 → ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) ) ) | |
| 4 | 3 | al2imi | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) ) ) |
| 5 | 2 4 | biimtrid | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) ) ) |
| 6 | 5 | imim1d | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
| 7 | 6 | alimdv | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
| 8 | 7 | eximdv | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
| 9 | 1 8 | mpi | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) |
| 10 | axprlem1 | ⊢ ∃ 𝑣 ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) | |
| 11 | 9 10 | exlimiiv | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) |