This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of axpr . (Contributed by NM, 14-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprALT | ⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpair | ⊢ { 𝑥 , 𝑦 } ∈ V | |
| 2 | 1 | isseti | ⊢ ∃ 𝑧 𝑧 = { 𝑥 , 𝑦 } |
| 3 | dfcleq | ⊢ ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ) | |
| 4 | vex | ⊢ 𝑤 ∈ V | |
| 5 | 4 | elpr | ⊢ ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) |
| 6 | 5 | bibi2i | ⊢ ( ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) ) |
| 7 | biimpr | ⊢ ( ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) → ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) | |
| 8 | 6 7 | sylbi | ⊢ ( ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) → ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
| 9 | 8 | alimi | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) → ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
| 10 | 3 9 | sylbi | ⊢ ( 𝑧 = { 𝑥 , 𝑦 } → ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
| 11 | 2 10 | eximii | ⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) |