This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of axpr . (Contributed by NM, 14-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprALT | |- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpair | |- { x , y } e. _V |
|
| 2 | 1 | isseti | |- E. z z = { x , y } |
| 3 | dfcleq | |- ( z = { x , y } <-> A. w ( w e. z <-> w e. { x , y } ) ) |
|
| 4 | vex | |- w e. _V |
|
| 5 | 4 | elpr | |- ( w e. { x , y } <-> ( w = x \/ w = y ) ) |
| 6 | 5 | bibi2i | |- ( ( w e. z <-> w e. { x , y } ) <-> ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 7 | biimpr | |- ( ( w e. z <-> ( w = x \/ w = y ) ) -> ( ( w = x \/ w = y ) -> w e. z ) ) |
|
| 8 | 6 7 | sylbi | |- ( ( w e. z <-> w e. { x , y } ) -> ( ( w = x \/ w = y ) -> w e. z ) ) |
| 9 | 8 | alimi | |- ( A. w ( w e. z <-> w e. { x , y } ) -> A. w ( ( w = x \/ w = y ) -> w e. z ) ) |
| 10 | 3 9 | sylbi | |- ( z = { x , y } -> A. w ( ( w = x \/ w = y ) -> w e. z ) ) |
| 11 | 2 10 | eximii | |- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) |