This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of axnul , proved from propositional calculus, ax-gen , ax-4 , sp , and ax-rep . To check this, replace sp with the obsolete axiom ax-c5 in the proof of axnulALT and type the Metamath program "MM> SHOW TRACE__BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008) (Proof shortened by Mario Carneiro, 17-Nov-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axnulALT | ⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rep | ⊢ ( ∀ 𝑤 ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) | |
| 2 | sp | ⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) | |
| 3 | 2 | con2i | ⊢ ( ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) |
| 4 | df-ex | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) |
| 6 | fal | ⊢ ¬ ⊥ | |
| 7 | sp | ⊢ ( ∀ 𝑥 ⊥ → ⊥ ) | |
| 8 | 6 7 | mto | ⊢ ¬ ∀ 𝑥 ⊥ |
| 9 | 8 | pm2.21i | ⊢ ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) |
| 10 | 5 9 | mpg | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) |
| 11 | 1 10 | mpg | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) |
| 12 | 8 | intnan | ⊢ ¬ ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) |
| 13 | 12 | nex | ⊢ ¬ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) |
| 14 | 13 | nbn | ⊢ ( ¬ 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
| 15 | 14 | albii | ⊢ ( ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
| 17 | 11 16 | mpbir | ⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |