This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first version of the Axiom of Infinity ax-inf proved from the second version ax-inf2 . Note that we didn't use ax-reg , unlike the other direction axinf2 . (Contributed by NM, 24-Apr-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axinf | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ⊢ ω ∈ V | |
| 2 | inf0 | ⊢ ( ω ∈ V → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) |