This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem axaci

Description: Apply a choice equivalent. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis axaci.1 CHOICE x φ
Assertion axaci φ

Proof

Step Hyp Ref Expression
1 axaci.1 CHOICE x φ
2 axac3 CHOICE
3 2 1 mpbi x φ
4 3 spi φ