This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive ax6v (a weakened version of ax-6 where x and y must be distinct), from Separation ax-sep and Extensionality ax-ext . See ax6 for the derivation of ax-6 from ax6v . (Contributed by NM, 12-Nov-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6vsep | |- -. A. x -. x = y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-sep | |- E. x A. z ( z e. x <-> ( z e. y /\ ( z = z -> z = z ) ) ) |
|
| 2 | id | |- ( z = z -> z = z ) |
|
| 3 | 2 | biantru | |- ( z e. y <-> ( z e. y /\ ( z = z -> z = z ) ) ) |
| 4 | 3 | bibi2i | |- ( ( z e. x <-> z e. y ) <-> ( z e. x <-> ( z e. y /\ ( z = z -> z = z ) ) ) ) |
| 5 | 4 | biimpri | |- ( ( z e. x <-> ( z e. y /\ ( z = z -> z = z ) ) ) -> ( z e. x <-> z e. y ) ) |
| 6 | 5 | alimi | |- ( A. z ( z e. x <-> ( z e. y /\ ( z = z -> z = z ) ) ) -> A. z ( z e. x <-> z e. y ) ) |
| 7 | ax-ext | |- ( A. z ( z e. x <-> z e. y ) -> x = y ) |
|
| 8 | 6 7 | syl | |- ( A. z ( z e. x <-> ( z e. y /\ ( z = z -> z = z ) ) ) -> x = y ) |
| 9 | 8 | eximi | |- ( E. x A. z ( z e. x <-> ( z e. y /\ ( z = z -> z = z ) ) ) -> E. x x = y ) |
| 10 | 1 9 | ax-mp | |- E. x x = y |
| 11 | df-ex | |- ( E. x x = y <-> -. A. x -. x = y ) |
|
| 12 | 10 11 | mpbi | |- -. A. x -. x = y |