This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsdrsel | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → ∪ 𝑌 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑠 = 𝑌 → ( toInc ‘ 𝑠 ) = ( toInc ‘ 𝑌 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑠 = 𝑌 → ( ( toInc ‘ 𝑠 ) ∈ Dirset ↔ ( toInc ‘ 𝑌 ) ∈ Dirset ) ) |
| 3 | unieq | ⊢ ( 𝑠 = 𝑌 → ∪ 𝑠 = ∪ 𝑌 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑠 = 𝑌 → ( ∪ 𝑠 ∈ 𝐶 ↔ ∪ 𝑌 ∈ 𝐶 ) ) |
| 5 | 2 4 | imbi12d | ⊢ ( 𝑠 = 𝑌 → ( ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ↔ ( ( toInc ‘ 𝑌 ) ∈ Dirset → ∪ 𝑌 ∈ 𝐶 ) ) ) |
| 6 | isacs3lem | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) | |
| 7 | 6 | simprd | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) |
| 9 | elpw2g | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑌 ∈ 𝒫 𝐶 ↔ 𝑌 ⊆ 𝐶 ) ) | |
| 10 | 9 | biimpar | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ) → 𝑌 ∈ 𝒫 𝐶 ) |
| 11 | 5 8 10 | rspcdva | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ) → ( ( toInc ‘ 𝑌 ) ∈ Dirset → ∪ 𝑌 ∈ 𝐶 ) ) |
| 12 | 11 | 3impia | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → ∪ 𝑌 ∈ 𝐶 ) |