This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| abssub.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | abstrii | ⊢ ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | abssub.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | abstri | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) |