This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablcom.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| abl32.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| abl32.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| abl32.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| abl32.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | abl32 | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablcom.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | abl32.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 4 | abl32.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | abl32.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | abl32.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 9 | 1 2 | cmn32 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) ) |
| 10 | 8 4 5 6 9 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) ) |