This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abexex.1 | ⊢ 𝐴 ∈ V | |
| abexex.2 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | ||
| abexex.3 | ⊢ { 𝑦 ∣ 𝜑 } ∈ V | ||
| Assertion | abexex | ⊢ { 𝑦 ∣ ∃ 𝑥 𝜑 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abexex.1 | ⊢ 𝐴 ∈ V | |
| 2 | abexex.2 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
| 3 | abexex.3 | ⊢ { 𝑦 ∣ 𝜑 } ∈ V | |
| 4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 5 | 2 | pm4.71ri | ⊢ ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 7 | 4 6 | bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 𝜑 ) |
| 8 | 7 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 𝜑 } |
| 9 | 1 3 | abrexex2 | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ∈ V |
| 10 | 8 9 | eqeltrri | ⊢ { 𝑦 ∣ ∃ 𝑥 𝜑 } ∈ V |