This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 8th4div3 | ⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( 1 / 6 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | 8re | ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni | ⊢ 8 ∈ ℂ |
| 4 | 4cn | ⊢ 4 ∈ ℂ | |
| 5 | 3cn | ⊢ 3 ∈ ℂ | |
| 6 | 8pos | ⊢ 0 < 8 | |
| 7 | 2 6 | gt0ne0ii | ⊢ 8 ≠ 0 |
| 8 | 3ne0 | ⊢ 3 ≠ 0 | |
| 9 | 1 3 4 5 7 8 | divmuldivi | ⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( ( 1 · 4 ) / ( 8 · 3 ) ) |
| 10 | 1 4 | mulcomi | ⊢ ( 1 · 4 ) = ( 4 · 1 ) |
| 11 | 2cn | ⊢ 2 ∈ ℂ | |
| 12 | 4 11 5 | mul32i | ⊢ ( ( 4 · 2 ) · 3 ) = ( ( 4 · 3 ) · 2 ) |
| 13 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
| 14 | 13 | oveq1i | ⊢ ( ( 4 · 2 ) · 3 ) = ( 8 · 3 ) |
| 15 | 12 14 | eqtr3i | ⊢ ( ( 4 · 3 ) · 2 ) = ( 8 · 3 ) |
| 16 | 4 5 11 | mulassi | ⊢ ( ( 4 · 3 ) · 2 ) = ( 4 · ( 3 · 2 ) ) |
| 17 | 15 16 | eqtr3i | ⊢ ( 8 · 3 ) = ( 4 · ( 3 · 2 ) ) |
| 18 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 19 | 18 | oveq2i | ⊢ ( 4 · ( 3 · 2 ) ) = ( 4 · 6 ) |
| 20 | 17 19 | eqtri | ⊢ ( 8 · 3 ) = ( 4 · 6 ) |
| 21 | 10 20 | oveq12i | ⊢ ( ( 1 · 4 ) / ( 8 · 3 ) ) = ( ( 4 · 1 ) / ( 4 · 6 ) ) |
| 22 | 9 21 | eqtri | ⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( ( 4 · 1 ) / ( 4 · 6 ) ) |
| 23 | 6re | ⊢ 6 ∈ ℝ | |
| 24 | 23 | recni | ⊢ 6 ∈ ℂ |
| 25 | 6pos | ⊢ 0 < 6 | |
| 26 | 23 25 | gt0ne0ii | ⊢ 6 ≠ 0 |
| 27 | 4ne0 | ⊢ 4 ≠ 0 | |
| 28 | divcan5 | ⊢ ( ( 1 ∈ ℂ ∧ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 4 · 1 ) / ( 4 · 6 ) ) = ( 1 / 6 ) ) | |
| 29 | 1 28 | mp3an1 | ⊢ ( ( ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 4 · 1 ) / ( 4 · 6 ) ) = ( 1 / 6 ) ) |
| 30 | 24 26 4 27 29 | mp4an | ⊢ ( ( 4 · 1 ) / ( 4 · 6 ) ) = ( 1 / 6 ) |
| 31 | 22 30 | eqtri | ⊢ ( ( 1 / 8 ) · ( 4 / 3 ) ) = ( 1 / 6 ) |