This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of 3impexp where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3impexpbicom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | ⊢ ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) | |
| 2 | imbi2 | ⊢ ( ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) → ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) ) | |
| 3 | 2 | biimpcd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) → ( ( ( 𝜃 ↔ 𝜏 ) ↔ ( 𝜏 ↔ 𝜃 ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) ) |
| 4 | 1 3 | mpi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) |
| 5 | 4 | 3expd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) → ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |
| 6 | 3impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) | |
| 7 | 6 | biimpri | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) ) |
| 8 | 7 1 | imbitrrdi | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ) |
| 9 | 5 8 | impbii | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) ) |