This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of 3impexp where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3impexpbicom | |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | |- ( ( th <-> ta ) <-> ( ta <-> th ) ) |
|
| 2 | imbi2 | |- ( ( ( th <-> ta ) <-> ( ta <-> th ) ) -> ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ) ) |
|
| 3 | 2 | biimpcd | |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ( ( th <-> ta ) <-> ( ta <-> th ) ) -> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ) ) |
| 4 | 1 3 | mpi | |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ) |
| 5 | 4 | 3expd | |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ) |
| 6 | 3impexp | |- ( ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ) |
|
| 7 | 6 | biimpri | |- ( ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) -> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ) |
| 8 | 7 1 | imbitrrdi | |- ( ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) -> ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ) |
| 9 | 5 8 | impbii | |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ) |