This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3gencl.1 | ⊢ ( 𝐷 ∈ 𝑆 ↔ ∃ 𝑥 ∈ 𝑅 𝐴 = 𝐷 ) | |
| 3gencl.2 | ⊢ ( 𝐹 ∈ 𝑆 ↔ ∃ 𝑦 ∈ 𝑅 𝐵 = 𝐹 ) | ||
| 3gencl.3 | ⊢ ( 𝐺 ∈ 𝑆 ↔ ∃ 𝑧 ∈ 𝑅 𝐶 = 𝐺 ) | ||
| 3gencl.4 | ⊢ ( 𝐴 = 𝐷 → ( 𝜑 ↔ 𝜓 ) ) | ||
| 3gencl.5 | ⊢ ( 𝐵 = 𝐹 → ( 𝜓 ↔ 𝜒 ) ) | ||
| 3gencl.6 | ⊢ ( 𝐶 = 𝐺 → ( 𝜒 ↔ 𝜃 ) ) | ||
| 3gencl.7 | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝜑 ) | ||
| Assertion | 3gencl | ⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3gencl.1 | ⊢ ( 𝐷 ∈ 𝑆 ↔ ∃ 𝑥 ∈ 𝑅 𝐴 = 𝐷 ) | |
| 2 | 3gencl.2 | ⊢ ( 𝐹 ∈ 𝑆 ↔ ∃ 𝑦 ∈ 𝑅 𝐵 = 𝐹 ) | |
| 3 | 3gencl.3 | ⊢ ( 𝐺 ∈ 𝑆 ↔ ∃ 𝑧 ∈ 𝑅 𝐶 = 𝐺 ) | |
| 4 | 3gencl.4 | ⊢ ( 𝐴 = 𝐷 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | 3gencl.5 | ⊢ ( 𝐵 = 𝐹 → ( 𝜓 ↔ 𝜒 ) ) | |
| 6 | 3gencl.6 | ⊢ ( 𝐶 = 𝐺 → ( 𝜒 ↔ 𝜃 ) ) | |
| 7 | 3gencl.7 | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝜑 ) | |
| 8 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝑅 𝐶 = 𝐺 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑅 ∧ 𝐶 = 𝐺 ) ) | |
| 9 | 3 8 | bitri | ⊢ ( 𝐺 ∈ 𝑆 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑅 ∧ 𝐶 = 𝐺 ) ) |
| 10 | 6 | imbi2d | ⊢ ( 𝐶 = 𝐺 → ( ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜒 ) ↔ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜃 ) ) ) |
| 11 | 4 | imbi2d | ⊢ ( 𝐴 = 𝐷 → ( ( 𝑧 ∈ 𝑅 → 𝜑 ) ↔ ( 𝑧 ∈ 𝑅 → 𝜓 ) ) ) |
| 12 | 5 | imbi2d | ⊢ ( 𝐵 = 𝐹 → ( ( 𝑧 ∈ 𝑅 → 𝜓 ) ↔ ( 𝑧 ∈ 𝑅 → 𝜒 ) ) ) |
| 13 | 7 | 3expia | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑧 ∈ 𝑅 → 𝜑 ) ) |
| 14 | 1 2 11 12 13 | 2gencl | ⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑅 → 𝜒 ) ) |
| 15 | 14 | com12 | ⊢ ( 𝑧 ∈ 𝑅 → ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜒 ) ) |
| 16 | 9 10 15 | gencl | ⊢ ( 𝐺 ∈ 𝑆 → ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝜃 ) ) |
| 17 | 16 | com12 | ⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐺 ∈ 𝑆 → 𝜃 ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → 𝜃 ) |