This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2mpo0.o | ⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) | |
| 2mpo0.u | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) ) | ||
| Assertion | 2mpo0 | ⊢ ( ¬ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2mpo0.o | ⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) | |
| 2 | 2mpo0.u | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) ) | |
| 3 | ianor | ⊢ ( ¬ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) ↔ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∨ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) ) | |
| 4 | 1 | mpondm0 | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝑂 𝑌 ) = ∅ ) |
| 5 | 4 | oveqd | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ∅ 𝑇 ) ) |
| 6 | 0ov | ⊢ ( 𝑆 ∅ 𝑇 ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ∅ ) |
| 8 | notnotb | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ↔ ¬ ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 9 | 2 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) ) |
| 10 | 9 | oveqd | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) 𝑇 ) ) |
| 11 | eqid | ⊢ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) = ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) | |
| 12 | 11 | mpondm0 | ⊢ ( ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) → ( 𝑆 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) 𝑇 ) = ∅ ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐹 ) 𝑇 ) = ∅ ) |
| 14 | 10 13 | eqtrd | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ∅ ) |
| 15 | 8 14 | sylanbr | ⊢ ( ( ¬ ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ∅ ) |
| 16 | 7 15 | jaoi3 | ⊢ ( ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∨ ¬ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ∅ ) |
| 17 | 3 16 | sylbi | ⊢ ( ¬ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ∅ ) |