This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlbas.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
| 2idlbas.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | ||
| 2idlbas.b | ⊢ 𝐵 = ( Base ‘ 𝐽 ) | ||
| Assertion | 2idlelbas | ⊢ ( 𝜑 → ( 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlbas.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
| 2 | 2idlbas.j | ⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) | |
| 3 | 2idlbas.b | ⊢ 𝐵 = ( Base ‘ 𝐽 ) | |
| 4 | 1 2 3 | 2idlbas | ⊢ ( 𝜑 → 𝐵 = 𝐼 ) |
| 5 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 8 | eqid | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) | |
| 9 | 5 6 7 8 | 2idlelb | ⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 10 | 9 | simplbi | ⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 12 | 4 11 | eqeltrd | ⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 13 | 9 | simprbi | ⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 15 | 4 14 | eqeltrd | ⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 16 | 12 15 | jca | ⊢ ( 𝜑 → ( 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |