This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlbas.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
| 2idlbas.j | |- J = ( R |`s I ) |
||
| 2idlbas.b | |- B = ( Base ` J ) |
||
| Assertion | 2idlelbas | |- ( ph -> ( B e. ( LIdeal ` R ) /\ B e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlbas.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
| 2 | 2idlbas.j | |- J = ( R |`s I ) |
|
| 3 | 2idlbas.b | |- B = ( Base ` J ) |
|
| 4 | 1 2 3 | 2idlbas | |- ( ph -> B = I ) |
| 5 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 6 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 7 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 8 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
| 9 | 5 6 7 8 | 2idlelb | |- ( I e. ( 2Ideal ` R ) <-> ( I e. ( LIdeal ` R ) /\ I e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 10 | 9 | simplbi | |- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` R ) ) |
| 11 | 1 10 | syl | |- ( ph -> I e. ( LIdeal ` R ) ) |
| 12 | 4 11 | eqeltrd | |- ( ph -> B e. ( LIdeal ` R ) ) |
| 13 | 9 | simprbi | |- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
| 14 | 1 13 | syl | |- ( ph -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
| 15 | 4 14 | eqeltrd | |- ( ph -> B e. ( LIdeal ` ( oppR ` R ) ) ) |
| 16 | 12 15 | jca | |- ( ph -> ( B e. ( LIdeal ` R ) /\ B e. ( LIdeal ` ( oppR ` R ) ) ) ) |