This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double quantification with existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2euexv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2euex | |- ( E! x E. y ph -> E. y E! x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu | |- ( E! x E. y ph <-> ( E. x E. y ph /\ E* x E. y ph ) ) |
|
| 2 | excom | |- ( E. x E. y ph <-> E. y E. x ph ) |
|
| 3 | nfe1 | |- F/ y E. y ph |
|
| 4 | 3 | nfmo | |- F/ y E* x E. y ph |
| 5 | 19.8a | |- ( ph -> E. y ph ) |
|
| 6 | 5 | moimi | |- ( E* x E. y ph -> E* x ph ) |
| 7 | moeu | |- ( E* x ph <-> ( E. x ph -> E! x ph ) ) |
|
| 8 | 6 7 | sylib | |- ( E* x E. y ph -> ( E. x ph -> E! x ph ) ) |
| 9 | 4 8 | eximd | |- ( E* x E. y ph -> ( E. y E. x ph -> E. y E! x ph ) ) |
| 10 | 2 9 | biimtrid | |- ( E* x E. y ph -> ( E. x E. y ph -> E. y E! x ph ) ) |
| 11 | 10 | impcom | |- ( ( E. x E. y ph /\ E* x E. y ph ) -> E. y E! x ph ) |
| 12 | 1 11 | sylbi | |- ( E! x E. y ph -> E. y E! x ph ) |