This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first component of the value of a right injection is 1o . (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stinr | ⊢ ( 𝑋 ∈ 𝑉 → ( 1st ‘ ( inr ‘ 𝑋 ) ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr | ⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) | |
| 2 | opeq2 | ⊢ ( 𝑥 = 𝑋 → 〈 1o , 𝑥 〉 = 〈 1o , 𝑋 〉 ) | |
| 3 | elex | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) | |
| 4 | opex | ⊢ 〈 1o , 𝑋 〉 ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → 〈 1o , 𝑋 〉 ∈ V ) |
| 6 | 1 2 3 5 | fvmptd3 | ⊢ ( 𝑋 ∈ 𝑉 → ( inr ‘ 𝑋 ) = 〈 1o , 𝑋 〉 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝑋 ∈ 𝑉 → ( 1st ‘ ( inr ‘ 𝑋 ) ) = ( 1st ‘ 〈 1o , 𝑋 〉 ) ) |
| 8 | 1oex | ⊢ 1o ∈ V | |
| 9 | op1stg | ⊢ ( ( 1o ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( 1st ‘ 〈 1o , 𝑋 〉 ) = 1o ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑋 ∈ 𝑉 → ( 1st ‘ 〈 1o , 𝑋 〉 ) = 1o ) |
| 11 | 7 10 | eqtrd | ⊢ ( 𝑋 ∈ 𝑉 → ( 1st ‘ ( inr ‘ 𝑋 ) ) = 1o ) |