This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.28 of Margaris p. 90. See 19.28v for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993) (Proof shortened by Wolf Lammen, 7-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 19.28.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | 19.28 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.28.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) | |
| 3 | 1 | 19.3 | ⊢ ( ∀ 𝑥 𝜑 ↔ 𝜑 ) |
| 4 | 2 3 | bianbi | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |