This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.28 of Margaris p. 90. See 19.28v for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993) (Proof shortened by Wolf Lammen, 7-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 19.28.1 | |- F/ x ph |
|
| Assertion | 19.28 | |- ( A. x ( ph /\ ps ) <-> ( ph /\ A. x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.28.1 | |- F/ x ph |
|
| 2 | 19.26 | |- ( A. x ( ph /\ ps ) <-> ( A. x ph /\ A. x ps ) ) |
|
| 3 | 1 | 19.3 | |- ( A. x ph <-> ph ) |
| 4 | 2 3 | bianbi | |- ( A. x ( ph /\ ps ) <-> ( ph /\ A. x ps ) ) |