This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 0nelfun

Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021)

Ref Expression
Assertion 0nelfun ( Fun 𝑅 → ∅ ∉ 𝑅 )

Proof

Step Hyp Ref Expression
1 funrel ( Fun 𝑅 → Rel 𝑅 )
2 0nelrel ( Rel 𝑅 → ∅ ∉ 𝑅 )
3 1 2 syl ( Fun 𝑅 → ∅ ∉ 𝑅 )