This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Two arbitrary integers are congruent modulo 1, see example 4 in
ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)
|
|
Ref |
Expression |
|
Assertion |
zmod1congr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmod10 |
|
| 2 |
1
|
adantr |
|
| 3 |
|
zmod10 |
|
| 4 |
3
|
adantl |
|
| 5 |
2 4
|
eqtr4d |
|