This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem zmod10

Description: An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion zmod10 N N mod 1 = 0

Proof

Step Hyp Ref Expression
1 zre N N
2 modfrac N N mod 1 = N N
3 1 2 syl N N mod 1 = N N
4 flid N N = N
5 4 oveq2d N N N = N N
6 zcn N N
7 6 subidd N N N = 0
8 3 5 7 3eqtrd N N mod 1 = 0