This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Vertex degree
vdegp1ci
Metamath Proof Explorer
Description: The induction step for a vertex degree calculation, for example in the
Königsberg graph. If the degree of U in the edge set E
is P , then adding { X , U } to the edge set, where
X =/= U , yields degree P + 1 . (Contributed by Mario
Carneiro , 12-Mar-2015) (Revised by Mario Carneiro , 28-Feb-2016)
(Revised by AV , 3-Mar-2021)
Ref
Expression
Hypotheses
vdegp1ai.vg
⊢ V = Vtx ⁡ G
vdegp1ai.u
⊢ U ∈ V
vdegp1ai.i
⊢ I = iEdg ⁡ G
vdegp1ai.w
⊢ I ∈ Word x ∈ 𝒫 V ∖ ∅ | x ≤ 2
vdegp1ai.d
⊢ VtxDeg ⁡ G ⁡ U = P
vdegp1ai.vf
⊢ Vtx ⁡ F = V
vdegp1bi.x
⊢ X ∈ V
vdegp1bi.xu
⊢ X ≠ U
vdegp1ci.f
⊢ iEdg ⁡ F = I ++ 〈“ X U ”〉
Assertion
vdegp1ci
⊢ VtxDeg ⁡ F ⁡ U = P + 1
Proof
Step
Hyp
Ref
Expression
1
vdegp1ai.vg
⊢ V = Vtx ⁡ G
2
vdegp1ai.u
⊢ U ∈ V
3
vdegp1ai.i
⊢ I = iEdg ⁡ G
4
vdegp1ai.w
⊢ I ∈ Word x ∈ 𝒫 V ∖ ∅ | x ≤ 2
5
vdegp1ai.d
⊢ VtxDeg ⁡ G ⁡ U = P
6
vdegp1ai.vf
⊢ Vtx ⁡ F = V
7
vdegp1bi.x
⊢ X ∈ V
8
vdegp1bi.xu
⊢ X ≠ U
9
vdegp1ci.f
⊢ iEdg ⁡ F = I ++ 〈“ X U ”〉
10
prcom
⊢ X U = U X
11
s1eq
⊢ X U = U X → 〈“ X U ”〉 = 〈“ U X ”〉
12
10 11
ax-mp
⊢ 〈“ X U ”〉 = 〈“ U X ”〉
13
12
oveq2i
⊢ I ++ 〈“ X U ”〉 = I ++ 〈“ U X ”〉
14
9 13
eqtri
⊢ iEdg ⁡ F = I ++ 〈“ U X ”〉
15
1 2 3 4 5 6 7 8 14
vdegp1bi
⊢ VtxDeg ⁡ F ⁡ U = P + 1