This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)
|
|
Ref |
Expression |
|
Assertion |
unisn2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unisng |
|
| 2 |
|
prid2g |
|
| 3 |
1 2
|
eqeltrd |
|
| 4 |
|
snprc |
|
| 5 |
4
|
biimpi |
|
| 6 |
5
|
unieqd |
|
| 7 |
|
uni0 |
|
| 8 |
|
0ex |
|
| 9 |
8
|
prid1 |
|
| 10 |
7 9
|
eqeltri |
|
| 11 |
6 10
|
eqeltrdi |
|
| 12 |
3 11
|
pm2.61i |
|