This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisn2 | |- U. { A } e. { (/) , A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisng | |- ( A e. _V -> U. { A } = A ) |
|
| 2 | prid2g | |- ( A e. _V -> A e. { (/) , A } ) |
|
| 3 | 1 2 | eqeltrd | |- ( A e. _V -> U. { A } e. { (/) , A } ) |
| 4 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 5 | 4 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 6 | 5 | unieqd | |- ( -. A e. _V -> U. { A } = U. (/) ) |
| 7 | uni0 | |- U. (/) = (/) |
|
| 8 | 0ex | |- (/) e. _V |
|
| 9 | 8 | prid1 | |- (/) e. { (/) , A } |
| 10 | 7 9 | eqeltri | |- U. (/) e. { (/) , A } |
| 11 | 6 10 | eqeltrdi | |- ( -. A e. _V -> U. { A } e. { (/) , A } ) |
| 12 | 3 11 | pm2.61i | |- U. { A } e. { (/) , A } |