This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
unifi
Metamath Proof Explorer
Description: The finite union of finite sets is finite. Exercise 13 of Enderton
p. 144. (Contributed by NM , 22-Aug-2008) (Revised by Mario Carneiro , 31-Aug-2015)
Ref
Expression
Assertion
unifi
⊢ A ∈ Fin ∧ A ⊆ Fin → ⋃ A ∈ Fin
Proof
Step
Hyp
Ref
Expression
1
dfss3
⊢ A ⊆ Fin ↔ ∀ x ∈ A x ∈ Fin
2
uniiun
⊢ ⋃ A = ⋃ x ∈ A x
3
iunfi
⊢ A ∈ Fin ∧ ∀ x ∈ A x ∈ Fin → ⋃ x ∈ A x ∈ Fin
4
2 3
eqeltrid
⊢ A ∈ Fin ∧ ∀ x ∈ A x ∈ Fin → ⋃ A ∈ Fin
5
1 4
sylan2b
⊢ A ∈ Fin ∧ A ⊆ Fin → ⋃ A ∈ Fin