This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Tarski classes
tsktrss
Metamath Proof Explorer
Description: A transitive element of a Tarski class is a part of the class. JFM
CLASSES2 th. 8. (Contributed by FL , 22-Feb-2011) (Revised by Mario
Carneiro , 20-Sep-2014)
Ref
Expression
Assertion
tsktrss
⊢ T ∈ Tarski ∧ Tr ⁡ A ∧ A ∈ T → A ⊆ T
Proof
Step
Hyp
Ref
Expression
1
simp2
⊢ T ∈ Tarski ∧ Tr ⁡ A ∧ A ∈ T → Tr ⁡ A
2
dftr4
⊢ Tr ⁡ A ↔ A ⊆ 𝒫 A
3
1 2
sylib
⊢ T ∈ Tarski ∧ Tr ⁡ A ∧ A ∈ T → A ⊆ 𝒫 A
4
tskpwss
⊢ T ∈ Tarski ∧ A ∈ T → 𝒫 A ⊆ T
5
4
3adant2
⊢ T ∈ Tarski ∧ Tr ⁡ A ∧ A ∈ T → 𝒫 A ⊆ T
6
3 5
sstrd
⊢ T ∈ Tarski ∧ Tr ⁡ A ∧ A ∈ T → A ⊆ T