This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Tarski classes
tskssel
Metamath Proof Explorer
Description: A part of a Tarski class strictly dominated by the class is an element of
the class. JFM CLASSES2 th. 2. (Contributed by FL , 22-Feb-2011) (Proof
shortened by Mario Carneiro , 20-Sep-2014)
Ref
Expression
Assertion
tskssel
⊢ T ∈ Tarski ∧ A ⊆ T ∧ A ≺ T → A ∈ T
Proof
Step
Hyp
Ref
Expression
1
sdomnen
⊢ A ≺ T → ¬ A ≈ T
2
1
3ad2ant3
⊢ T ∈ Tarski ∧ A ⊆ T ∧ A ≺ T → ¬ A ≈ T
3
tsken
⊢ T ∈ Tarski ∧ A ⊆ T → A ≈ T ∨ A ∈ T
4
3
3adant3
⊢ T ∈ Tarski ∧ A ⊆ T ∧ A ≺ T → A ≈ T ∨ A ∈ T
5
4
ord
⊢ T ∈ Tarski ∧ A ⊆ T ∧ A ≺ T → ¬ A ≈ T → A ∈ T
6
2 5
mpd
⊢ T ∈ Tarski ∧ A ⊆ T ∧ A ≺ T → A ∈ T